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Fe(II)/ 𝛼-ketoglutarate ( 𝛼KG)-dependent oxygenases catalyze the oxidative modification of various molecules, 

from DNA, RNA, and proteins to primary and secondary metabolites. They also catalyze a variety of biochemical 

reactions, including hydroxylation, halogenation, desaturation, epoxidation, cyclization, peroxidation, epimeriza- 

tion, and rearrangement. Given the versatile catalytic capability of such oxygenases, numerous studies have been 

conducted to characterize their functions and elucidate their structure–function relationships over the past few 

decades. Amino acids, particularly nonproteinogenic amino acids, are considered as important building blocks for 

chemical synthesis and components for natural product biosynthesis. In addition, the Fe(II)/ 𝛼KG-dependent oxy- 

genase superfamily includes important enzymes for generating amino acid derivatives, as they efficiently modify 

various free-standing amino acids. The recent discovery of new Fe(II)/ 𝛼KG-dependent oxygenases and the repur- 

posing of known enzymes in this superfamily have promoted the generation of useful amino acid derivatives. 

Therefore, this study will focus on the recent progress achieved from 2019 to 2022 to provide a clear view of the 

mechanism by which these enzymes have expanded the repertoire of free amino acid oxidative modifications. 
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. Introduction 

Fe(II)- and 𝛼-ketoglutarate ( 𝛼KG)-dependent oxygenases are widely

istributed in nature, including microorganisms, plants, and vertebrates.

uring the past few decades, many studies have intensively investigated

he mechanisms and structure–function relationships of Fe(II)/ 𝛼KG-

ependent oxygenases. These efforts have revealed a generic mecha-

ism and common double-stranded 𝛽-helix fold shared by the members

f this superfamily [ 1 , 2 , 34 , 41 , 49 , 53 , 57 , 81 , 83 ]. Fe(II)/ 𝛼KG-dependent

xygenases catalyze the oxidative modification of primary and sec-

ndary metabolites, using O 2 with Fe(II) as the cofactor and 𝛼KG as

he cosubstrate [ 40 , 43 , 59 ]. The oxidative decarboxylation of 𝛼KG to

uccinate generates a highly reactive Fe(IV)-oxo species, which selec-

ively oxidizes inactivated C–H bonds and leads to a wide array of

iochemical reactions, including hydroxylation, halogenation, desatu-

ation, epoxidation, cyclization, peroxidation, epimerization, and rear-

angement [ 10 , 17 , 22 , 25 , 33 , 56 , 63 , 65 , 68 , 71 , 85 , 92 , 97 ]. 

Given their association with numerous biological processes,

e(II)/ 𝛼KG-dependent oxygenases play an important role in nature

36] . Many Fe(II)/ 𝛼KG-dependent oxygenases account for the mod-

fication of chromatin, DNA, and proteins, as well as the demethy-

ation/hydroxylation of RNA [ 5 , 47 , 48 , 52 , 57 ]. Thus, such oxygenases

ave been reviewed recently [36] . Furthermore, given their versatile
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atalytic roles and synthetic capabilities, Fe(II)/ 𝛼KG-dependent oxyge-

ases can oxidize primary metabolites, such as amino acids, and tai-

or various biologically important natural products, including alkaloids

nd meroterpenoids [ 15 , 44 , 56 , 63 , 66 , 78 , 90 , 92 ]. The structure–function

elationship of Fe(II)/ 𝛼KG-dependent oxygenases in the biosynthesis of

atural products, particularly meroterpenoids, have been summarized

n excellent reviews [ 7 , 26 , 28 , 36 , 54 , 64 , 84 , 91 , 98 , 104 ]. In addition, the

haracterization and engineering of halogenases have been summarized

n reviews published in 2022 [ 74 , 96 ]. Thus, this study will focus on

e(II)/ 𝛼KG-dependent oxygenases that are responsible for amino acid

odifications. 

Amino acid derivatives are considered as important nutritional sup-

lements, pharmaceutical intermediates, and building blocks for organic

ynthesis and natural product biosynthesis [ 60 , 88 , 101 ]. Given their ver-

atile applications, an increasing number of Fe(II)/ 𝛼KG-dependent oxy-

enases have been characterized for amino acid modifications. They ox-

dize carrier protein-bound and free-standing amino acids during nat-

ral product biosynthesis. For example, KtzO and KtzP cannot accept

ree-standing l -Glu-during kutzneride biosynthesis. Thus, they hydrox-

late l -Glu-bound to a peptidyl carrier protein and generate l ‑threo -

nd l ‑erythro -hydroxyglutamic acids, respectively [87] . By contrast,

ome Fe(II)/ 𝛼KG-dependent hydroxylases accept free amino acids as

ubstrates, such as the proline hydroxylase P3H/P4H [ 30 , 61 , 62 ], the
 . 
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Fig. 1. 𝛽-Hydroxylation of free-standing amino acids by ( A ) IboH, ( B ) GloE, and ( C ) AEP14369. 
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soleucine 4-hydroxylase IDO [ 37 , 42 , 70 , 99 ], the leucine 5-hydroxylases

doA and GriE [ 38 , 51 , 103 ], the lysine 3/4-hydroxylases KDO and

3H/K4H [ 8 , 32 ], the arginine 3-hydroxylase VioC [ 21 , 35 , 100 ], and the

lutamine 3-hydroxylase AsnO [86] . These 𝛼KG-dependent amino acid

ydroxylases have been described in previous reviews [ 26 , 39 , 53 , 74 , 75 ].

herefore, we will primarily discuss the recent progress achieved from

019 to 2022. Apart from summarizing the new Fe(II)/ 𝛼KG-dependent

nzymes that were recently discovered and characterized for the ox-

dative modification of free-standing amino acids, we will also focus

n reactions involving known repurposed enzymes, which facilitate the

eneration of useful amino acid derivatives. 

. Discovery of new Fe(II)/ 𝜶KG-dependent oxygenases to expand 

he repertoire of amino acid oxidative modifications 

.1. Hydroxylation of amino acids by Fe(II)/ 𝛼KG-dependent oxygenases 

.1.1. 𝛽-Hydroxylation 

𝛽-Hydroxy ( 𝛽-OH or 3-OH) amino acids, including 𝛽-fluoro amino

cids and 𝛽-lactams, are important precursors for pharmaceuticals and

uilding blocks for organic synthesis [ 50 , 73 ]. In addition, 𝛽-OH amino

cids are found in biologically active natural products, such as 𝛽-OH-

lu-in kutznerides [87] and 𝛽-OH-Arg-in viomycin [100] . Fe(II)/ 𝛼KG-

ependent oxygenases are also important, as they not only modify amino

cids tethered to a carrier protein, such as the generation of 𝛽-OH-Glu-

ound to the peptidyl carrier protein by KtzO and KtzP during kutzner-

de biosynthesis [87] , but also hydroxylate free-standing amino acids,

uch as l -Arg-by VioC [100] and l -Lys-by KDO1 [8] . However, until

he characterization of IboH, which is the first reported Fe(II)/ 𝛼KG-

ependent oxygenase for the hydroxylation of free l -Glu, no Fe(II)/ 𝛼KG-

ependent oxygenase that could catalyze the 𝛽-hydroxylation of free-

tanding l -Glu-had been identified [69] ( Fig. 1A ). IboH is encoded in

he ibotenic acid biosynthetic gene cluster from Amanita muscaria . It

ccepts free l -Glu-to generate the product L ‑threo -3-OH-Glu, which ini-
2 
iates the biosynthesis of ibotenic acid in fly agaric. Moreover, IboH has

 strict substrate preference, as l -Gln, which has a similar structure to

 -Glu, was not accepted [69] . 

𝛽-OH-Gln-was discovered in the nonribosomal peptide pneumocan-

in B 0 [46] . In the biosynthetic gene cluster of pneumocandin B 0 , an

e(II)/ 𝛼KG-dependent oxygenase, GloE, was characterized as the 𝛽-

ydroxylase that generates l ‑threo - 𝛽-OH-Gln-from free-standing l -Gln

 Fig. 1B ) [79] . In addition to GloE, AEP14369 from Sulfobacillus ther-

otolerans Y0017 accepted l -Gln [31] . AEP14369 was characterized

s an Fe(II)/ 𝛼KG-dependent 𝛽-hydroxylase that selectively generates

 ‑threo - 𝛽-OH-Gln-and L ‑threo - 𝛽-OH-His-from l -Gln-and l -His, respec-

ively ( Fig. 1C ). 𝛽-OH- l -His-is present in many natural products, in-

luding nikkomycin [18] , siderophores [ 13 , 29 ], and bleomycin [ 89 , 95 ].

uring nikkomycin biosynthesis, the heme- and NADPH-dependent pro-

ein NikQ catalyzes the 𝛽-hydroxylation of l -His-bound to a carrier pro-

ein domain [18] . The generation of 𝛽-OH-His-in siderophores [77] and

lidomides [19] is performed by Fe(II)/ 𝛼KG-dependent 𝛽-hydroxylases

hat use thiolation domain-bound l -His-as a substrate. Notably, no

e(II)/ 𝛼KG-dependent enzyme that accepts free-standing l -Gln-and l -

is-had been reported until the discovery of GloE and AEP14369,

hich expanded the reaction repertoire of Fe(II)/ 𝛼KG-dependent 𝛽-

ydroxylases. 

.1.2. 𝛾-Hydroxylation 

𝛾-Hydroxy ( 𝛾-OH or 4-OH) amino acids are biologically and phar-

acologically important, as they are widely used as nutritional sup-

lements ( e.g., trans -4-OH- l -Pro), antidiabetic drugs ( e.g., 4-OH- l -Ile,

-OH- l -norVal, and 4-OH- l -Pip), and chiral building blocks for organic

ynthesis [ 60 , 101 ]. Furthermore, 𝛾-OH-amino acids are important build-

ng blocks for natural products. Newly discovered Fe(II)/ 𝛼KG-dependent

-hydroxylases have been characterized for the generation of 4-OH- l -

ys-in glidobactin [3] , 4-OH- l -Gln-in gramillin A [79] , and 4-OH- l -Cit

n GE81112A [105] ( Fig. 2 ). 
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Fig. 2. 𝛾-Hydroxylation of free-standing amino acids by ( A ) GlbB, ( B ) Q4Ox, and ( C ) GetI. 
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Based on previous reports, l -Lys-hydroxylases such as KDO2, KDO3,

nd K4H produce (4 R ) − 4-OH- l -Lys [ 8 , 32 ]. In contrast to these enzymes,

n Fe(II)/ 𝛼KG-dependent oxygenase, GlbB, was found to selectively gen-

rate (4 S ) − 4-OH- l -Lys-during glidobactin biosynthesis ( Fig. 2A ) [3] .

iochemical characterization revealed that GlbB not only catalyzes the

fficient 𝛾-hydroxylation of free-standing l -Lys-with complete regio-

nd diastereoselectivity, but also hydroxylates aliphatic amino acids

 l -Leu-and l -Met) with moderate total turnover numbers [3] . No-

ably, Fe(II)/ 𝛼KG-dependent hydroxylases selectively act on aliphatic

mino acids ( e.g., IDO) [ 37 , 42 , 70 ] or polar amino acids ( e.g., VioC)

 21 , 35 , 100 ]. Therefore, GlbB is the first enzyme in this family that ac-

epts both aliphatic and polar amino acids. Furthermore, the chemoen-

ymatic synthesis of cepafungin I, which is a potent inhibitor of the 20S

roteasome core, was achieved through the 4-hydroxylation of l -Lys-

ith GlbB [3] . 

4-OH- l -Gln-was detected in nonribosomal peptide gramillin A,

hose biosynthetic gene cluster contains the gene encoding the

e(II)/ 𝛼KG-dependent oxygenase Q4Ox [79] . Biochemical characteriza-

ions revealed that Q4Ox produced (4 R ) − 4-OH- l -Gln-from free-standing

 -Gln-with complete diastereoselectivity ( Fig. 2B ), thereby providing a

ew enzyme for the preparation of useful glutamine derivatives. 

GE81112s, which inhibit prokaryotic translation initiation, are non-

ibosomal tetrapeptides that contain several unusual amino acid build-

ng blocks, including 3-OH- l -Pip, 4-OH- l -Cit, and 𝛽-OH-2-Cl- l -His

 12 , 24 ]. Two Fe(II)/ 𝛼KG-dependent oxygenases, GetI and GetF, were

dentified in the biosynthetic gene cluster of GE81112s [9] . In previous

tudies, GetF was characterized as an l -Pip 𝛽-hydroxylase, and GetI was

nnotated as a 2-Cl- l -His 𝛽-hydroxylase [ 9 , 55 ]. However, a recent study

as revealed that GetI accepts l -Cit rather than 2-Cl- l -His-to generate

-OH- l -Cit [105] ( Fig. 2C ). Based on a homology model and sequence

lignment analysis, the rational mutagenesis of GetI generated a vari-
3 
nt that contains four mutations, as compared with a wild-type enzyme.

oreover, the GetI variant converted substrate preference from l -Cit to

 -Arg. With the characterization of GetF and GetI, the chemoenzymatic

otal synthesis of GE81112 B1 and its analogs was completed, which

romoted the first structure–activity studies of the antimicrobial activ-

ty of GE81112 [105] . 

.2. Cyclization reactions by Fe(II)/ 𝛼KG-dependent oxygenases using free 

mino acids 

.2.1. Aziridination by TqaL 

Several Fe(II)/ 𝛼KG-dependent oxygenases that accept free amino

cids have been reported; however, most of them such as IboH [69] ,

loE [3] , and AEP14369 [31] perform common hydroxylation reactions.

yclization reactions catalyzed by enzymes in this superfamily, includ-

ng CAS, H6H, HygX, LolO, and FfnD [ 22 , 25 , 33 , 56 , 71 ], have been re-

orted. However, no enzyme was found to catalyze the cyclization of

ingle and free-standing amino acids until the discovery of TqaL, which

yclizes l -Val-to an aziridine-containing product during the biosynthesis

f 2-aminoisobutyric acid (AIB), an important building block for bioac-

ive natural products [14] ( Fig. 3A ). In the biosynthetic gene cluster

f tryptoquialanine [27] , TqaL was identified and characterized as an

e(II)/ 𝛼KG-dependent oxygenase [14] . TqaL could initiate the reaction

y abstracting the H-3 of l -Val-via Fe(IV)-oxo species, leading to the

eneration of a C3-radical species. Subsequently, the C 

–N bond was

ormed to complete the aziridine-ring closure by either radical transfer

r cation generation [14] . In addition, when the deuterated substrate

2 S ,3 S )-[4,4,4–2 H 3 ]-Val-with a stereogenic center at C3 was used as a

echanistic probe, TqaL generated a diastereomeric pair of aziridines

ith the retention and inversion of C3 stereoconfiguration [93] . Fur-

hermore, investigations on the stereoselectivity and substrate speci-
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Fig. 3. Cyclization of free-standing amino acids to generate ( A ) aziridine ring from l -Val, (B) Ile-by TqaL, and ( C ) cyclopropane ring by BelL and HrmJ. 
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city of TqaL showed that nonnatural substrates, such as l -Ile-and l -

llo -Ile, were accepted by TqaL via a stereoconvergent process to gen-

rate diastereomeric pairs of aziridine and 3-OH-Ile-products ( Fig. 3B ),

hich is consistent with the mixed stereochemical course determined

sing (2 S ,3 S )-[4,4,4–2 H 3 ]-Val. Based on mutagenesis studies, the reac-

ion type (aziridination versus hydroxylation) and stereochemical out-

ome of TqaL were regulated by two active site residues (I343 and

345). Furthermore, large-to-small substitution of F345 expanded the

ubstrate scope of TqaL. For example, the F345S variant is highly active

oward l -Leu-and l -Met-to generate hydroxy ‑l -Leu-and l -Met-sulfoxide.

lthough the detailed mechanism of the aziridine-ring closure requires
4 
urther investigation, these results have greatly expanded the catalytic

epertoire of Fe(II)/ 𝛼KG-dependent oxygenases, thereby indicating that

he stereochemical outcomes of the reactions could be rationally con-

rolled by structure-guided mutagenesis. 

.2.2. Cyclopropanation by BelL and HrmJ 

Natural products with strained three-membered rings, including

ziridine and cyclopropane structures, such as aziridine-containing mit-

mycin and cyclopropane-containing belactosins and hormaomycins,

ave attracted great interest because of their potent biological activities

 4 , 6 , 11 , 94 ]. In the structure of belactosins and hormaomycins, cyclo-
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Fig. 4. Repurposing of ( A ) PolL and LdoA for nitrile or epoxide formation and ( B ) SmP4H for l -homophenylalanine oxidation. ( C ) The conversion of l -Lys-hydroxylase 

to Chi-14 halogenase. 
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ropane rings were found in 3-(2-aminocyclopropyl)alanine (Acpa) and

-(2-nitrocyclopropyl)alanine (Ncpa) residues, respectively [ 80 , 102 ].

emarkably, Acpa and Ncpa exhibit opposite stereoconfigurations at

1 ′ and C2 ′ in the cyclopropane rings; thus, their biosynthesis has at-

racted great attention [ 23 , 45 , 72 , 82 ]. Two heme oxygenase-like diiron

nzymes (BelK and HrmI, 51% identity) and two Fe(II)/ 𝛼KG-dependent

xygenases (BelL and HrmJ, 49% identity) were discovered by compar-
5 
ng the biosynthetic gene clusters of belactosins and hormaomycins. In

ddition, in vitro and in vivo experiments revealed that BelK and HrmI

xidize l -Lys-to 6-nitro-norLeu, which is subsequently accepted by BelL

r HrmJ to generate Ncpa with opposite stereoconfigurations at the cy-

lopropane rings [ 45 , 72 , 82 ] ( Fig. 3C ). HrmJ produced (1 ′ R ,2 ′ R )-Ncpa

ith high stereoselectivity, whereas BelL generated (1 ′ S ,2 ′ S )-Ncp as the

ajor product, which is consistent with the stereochemistry of cyclo-
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Table 1 

Substrate specificity and quantitative data of summarized enzymes. 

Substrates Kinetics TTNs Refs. 

IboH l -Glu ‒ ‒ [69] 

GloE l -Gln ‒ 44 [79] 

AEP14369 l -Gln k cat = 43.8 ± 4.1 min − 1 

K M = 1.17 ± 0.27 mM 

‒ [31] 

l -His k cat = 35.1 ± 3.9 min − 1 

K M = 0.83 ± 0.06 mM 

‒

GlbB l -Lys k cat = 960 ± 84 min − 1 

K M = 0.034 ± 0.005 mM 

5900 [3] 

l -Leu k cat = 3.2 ± 0.2 min − 1 

K M = 2.2 ± 0.4 mM 

310 

l -Met k cat = 12.0 ± 0.3 min − 1 

K M = 0.45 ± 0.05 mM 

330 

Q4Ox l -Gln k cat = 250 ± 3 min − 1 

K M = 0.99 ± 0.03 mM 

4300 [79] 

GetI l -Cit k cat = 69.0 ± 5.3 min − 1 

K M = 2.1 ± 0.4 mM 

470 [105] 

l -Arg k cat = 250 ± 3 min − 1 

K M = 0.99 ± 0.03 mM 

20 

TqaL l -Val k cat = 22.1 ± 1.0 min − 1 

K M = 172 ± 25 𝜇M 

‒ [93] 

l -Ile k cat = 14.5 ± 0.4 min − 1 

K M = 665 ± 45 𝜇M 

‒

l - allo -Ile k cat = 0.32 ± 0.03 min − 1 

K M = 270 ± 73 𝜇M 

‒

HrmJ 6-nitronorleucine ‒ ‒ [82] 

[45] BelL 6-nitronorleucine ‒ ‒

PolL (2 S ) − 2-amino-4- 

azidobutanoic acid 

k cat = 4.08 ± 0.74 min − 1 

K M = 1.49 ± 0.65 mM 

150 [20] 

LdoA 5-azido- l -norvaline k cat = 1.90 ± 0.18 min − 1 

K M = 1.30 ± 0.32 mM 

180 

( S ) − 2-aminohex-5-enoic acid ‒ ‒ [16] 

SmP4H (WT) l -hPhe k cat = 0.015 ± 0.001 min − 1 

K M = 1.10 ± 0.24 mM 

4 [58] 

SmP4H/ 

W40M I103L 

l -hPhe k cat = 1.680 ± 0.068 min − 1 

K M = 0.40 ± 0.08 mM 

39 

Hydrox l -Lys k cat = 22.5 ± 0.5 min − 1 

K M = 0.34 ± 0.05 mM 

136 [74] 

Hal l -Lys k cat = 10.5 ± 0.4 min − 1 

K M = 0.12 ± 0.03 mM 

410 

Chi-14 l -Lys k cat = 20.3 ± 0.5 min − 1 

K M = 0.29 ± 0.03 mM 

410 

Note: " ‒" indicates no data has been reported yet. TTNs: Total turnover numbers. 
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ropane rings found in hormaomycins and belactosins. Investigations of

he H abstraction site, which used stereoselectively deuterated 6-nitro-

orLeu, revealed that BelL and HrmJ selectively abstract 4- proS -H, but

hey exhibited no or little stereoselectivity for the dehydrogenation at C6

82] . Although additional investigations are necessary to understand the

echanism by which these enzymes control the stereochemistry, these

bservations have led to the identification of a novel approach for the

tereoselective construction of cyclopropane rings in natural products. 

. Repurposing Fe(II)/ 𝜶KG-dependent oxygenases for the 

ynthesis of new amino acid derivatives 

The discovery and characterization of new members in the

e(II)/ 𝛼KG-dependent oxygenase superfamily significantly expanded

he catalytic repertoire. Recently, the repurposing of previously charac-

erized enzymes, such as LdoA, PolL, and SmP4H, has emerged as a novel

pproach for generating new amino acid derivatives [ 16 , 20 , 58 ] ( Fig. 4 ).

doA from Nostoc punctiforme ACC80786 and PolL from Streptomyces au-

eochromogenes are considered as Fe(II)/ 𝛼KG-dependent oxygenases that

atalyze the hydroxylation of l -Leu-at the C5 position [38] and the di-

ydroxylation of l - 𝛼-amino- 𝛿-carbamoylhydroxyvaleric acid at the C3

nd C4 positions [76] , respectively. In a recent study, LdoA and PolL

ere found to catalyze nitrile formation when an azido group was in-

roduced into nonnative substrates [20] ( Fig. 4A ). Moreover, when an

lefin group was installed on the LdoA substrate, the reaction was redi-

ected to asymmetric epoxidation, which led to the generation of 5-OH-
6 
ip [16] ( Fig. 4A ). SmP4H, a proline 4-hydroxylase from SinoRhizobium

eliloti , was repurposed as an l -homophenylalanine (hPhe) hydroxylase

58] ( Fig. 4B ). Furthermore, structure-based rational engineering identi-

ed the W40M I103L variant with increased activity to generate further

xidized products, including 4-OH-hPhe, 4-ketone-hPhe, and 3-OH-4-

etone-hPhe ( Fig. 4B , Table 1 ). Notably, with only a single-site muta-

ion, the W40Y variant primarily served as a desaturase [58] ( Fig. 4B ).

hese studies revealed the catalytic potential of Fe(II)/ 𝛼KG-dependent

xygenases in synthetic and industrial applications. 

Compared with the wide range of Fe(II)/ 𝛼KG-dependent hydrox-

lases, the number of halogenases in this superfamily is limited. Re-

ently, the engineering of an Fe(II)/ 𝛼KG-dependent lysine hydroxylase

nto a halogenase was achieved [67] ( Fig. 4C ). Based on the phyloge-

etic tree of the BesD family, hydroxylases and halogenases are grouped

nto separate clades. However, a hydroxylase (Hydrox) was included

n the clade of putative halogenases. The Hydrox enzyme shares 71%

mino acid sequence identity with a halogenase (Hal). Biochemical char-

cterization revealed that Hydrox and Hal catalyze the hydroxylation

nd chlorination of l -Lys-at the C4 position, respectively. Hydroxylase–

alogenase chimeric enzymes were generated by constructing a DNA

huffling library using these two genes, and halogenation-active vari-

nts were screened using a high-throughput in vivo fluorescent screen

trategy. Finally, a variant (Chi-14) with 14 mutations was identified

ith comparable activity and higher selectivity to the wild-type haloge-

ase Hal ( Fig. 4C and Table 1 ). Most of the key mutations are located

n the two 𝛽-sheets lining the 𝛼KG binding pocket, except for the criti-
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al residue Gly144 that enables chloride coordination to the Fe(IV)-oxo

pecies, thereby indicating the importance of second-sphere residues for

rotein engineering, as they further tuned the activity and selectivity

f the engineered enzyme [67] . This study promotes the conversion of

ydroxylases to halogenases, thereby leading to the expansion of enzy-

atic halogenation. 

. Conclusions 

Recently, an increasing number of Fe(II)/ 𝛼KG-dependent oxygenases

ere identified and well-characterized, and reaction repurposing was

resented as a useful approach for the generation of important amino

cid derivatives. The characterization of new Fe(II)/ 𝛼KG-dependent

xygenases enriched the toolbox for amino acid hydroxylation and cy-

lization. However, a number of putative Fe(II)/ 𝛼KG-dependent oxy-

enases remain unknown, which need to be characterized. Repurpos-

ng the function of known Fe(II)/ 𝛼KG-dependent oxygenases could be

chieved by protein engineering and substrate design. For these newly

iscovered enzymes, although their functions and substrate scopes were

haracterized, the detailed mechanism and structure–function relation-

hip need further investigations. This could significantly facilitate the ra-

ional protein engineering and design of nonnatural substrates. Further-

ore, high-throughput screening and machine learning would assist en-

yme engineering and boost the development of Fe(II)/ 𝛼KG-dependent

xygenases as potential catalysts for chemosynthetic and industrial ap-

lication. 
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